Are the steering and organisation of the Norwegian research system optimal?

Discussion with the Norwegian Productivity Commission

Gardermoen 20 August 2015

Road map ...

- So why do we fund research anyway?
- Structure and organisation
- Governance and some of its pitfalls
- Steering and incentives
- Norwegian choices

Why do we want research at the national level?

- Why?
 - Good cultural reasons, including a need to understand
 - Manpower development
 - Absorptive capacity accessing global science
 - Providing inputs to innovation
 - Providing underpinnings to economic and social activities through the provision of public goods (standards, health, security ...)
 - Supporting government and regulation
- Institutionalised in
 - Universities
 - Scientific research institutes
 - Government laboratories
 - RTOs/industrial applied research institutes

The modern state intervenes in knowledge production for two sets of reasons

Market failure (Nelson-Arrow) often about basic research

- Indivisibility
- Inappropriability
- Uncertainty

Systems failure - mostly about inadequate performance

- Capability failures
- Institutional failures
- Network failures (including lock-in and transition failures)
- Framework failures

The social contract has been changing over time

- Post-War *Endless Frontier* 'hands-off' approach to science funding; expectation that welfare would increase in response but in unpredictable ways
- 1960s, OECD and the start of 'science policy' as tuning science to societal needs (Freeman, Frascati and the resurgence of Bernal ..)
- 1970s on, breakdown in trust; politicisation of technology (eg Vietnam); societal demands of S&T focus on industrial and technological development
- Circa 2000, 'grand' (systemic?) challenges; no longer about industry but fear that we have finally hit the limits to growth (climate, energy, ageing, disease ...)

If the OECD didn't collect statistics about it, the idea of basic research would have been dropped a long time ago (Godin)

Yes	Pure basic research (Bohr)	Use inspired basic research (Pasteur)
Quest for fundamental understanding No		Pure applied research (Edison)
	Yes rations of use	

To understand research relevance we need to drop the linear, new-knowledge-based idea of innovation

And see innovation primarily as imitation and the reworking of existing knowledge

Innovation systems – all the bits have to work – firms are at the core

Which is better – basic or applied research?

- Some of the most interesting evidence about the importance of basic and applied research comes from the budget rivalry between the US National Science Foundation (NSF) and mission-orientated research in the 1960s
- The US Department of Defence commissioned the Hindsight study, which traced the research antecedents of a number of weapons systems back for twenty years or so and concluded that the underpinning research was largely mission-orientated in nature
- NSF retorted with the TRACES study, which traced backwards for up to fifty years from five important civil innovations and found critical connections to basic research
- The unsurprising implication is that both sorts of research are at various times needed

The basic share of GERD in a basket of Western countries rises from 18.6% in 1989 to 20.2% in 2009

China: Stupendous growth in GERD. Basic share constant at 5% (RMB billions)

The Western way of research structure and governance

Key design issues

- Number and specialisation of ministry 'pipes'
- Degree of vertical division of labour (agencification, new public management, management by objectives ...)
- Balance among the four types of performing organisations
- How to coordinate national policy so that it addresses needs and is coherent
- How to address horizontal coordination, eg the societal challenges
- Broad policy mix in terms of basic, applied, development activities to be funded by the state
- How and where to use stakeholders to influence decisions
- Change agency

Who governs research funding? Issues ...

- Stakeholder takeover of allocation mechanisms in a three-level hierarchy (ie two principal-agent relationships) promotes stasis and self-reproduction of the research-performing system (Braun)
 - Ministry
 - Research council, innovation agency, sector funder
 - Research performers
- Self-governance or autonomy at the level of performers also leads to lock-ins (typically a university problem but can also affect institutes, cp SICS ...)
- A multi-principal agency locks in, in the absence of adequate internal or external policy coordination (van der Meulen RCN)
- Adjusting the governing role of the national state when research performers need to optimise performance at an international level
- Dynamic inconsistency and power struggles among ministries

Finland structure

Sweden structure

Coordination by a science ministry (France) has limitations

Norway structure

Money

Two-pillar funding logic from Sweden (STU) – largely tuned for industrial development

Three-in-one pillar logic from Norway – integrating industrial, scientific and other societal needs

Norwegian particularities

- NTNF and the institutes came before the research councils to foster industrial development. Is the institute system still adapted to national needs?
- Why a single research council?
 - Massive coordination failure with the innsatsområder in the 1980s
 - Holistic policy view was retrofitted after the 2000 evaluation
- Coordination failures endemic in the Norwegian system
 - Strong sector principle sectors' refusal to pay fo rbasic research
 - Low political power of the education/research sector
 - Practical solutions appear after 2000 with inter-ministry cooperation, KD finding resources to coordinate research and RCN increasing its efforts at horizontal programming
- Tough policy problem of the weakness of industrial R&D
 - *'Weak demand' in the research system*
 - A touch of 'Dutch disease' causing lock-ins in industrial structure?

Incentives: importance of competitive funding, 2009

	PRFS used?	Government sector funding	General university funds (GUF)	Government competitive research project funding
Belgium	Flanders	1,117	36%	64%
Denmark	Х	1,653	72%	28%
Ireland		704	31%	69%
Germany		7,575	71%	29%
Spain	Х	3,012	66%	34%
France		7,972	50%	50%
Italy	Х	5,204	85%	15%
Austria		1,669	76%	24%
Finland	Х	1,033	58%	42%
Sweden	Х	2,041	57%	43%
United Kingdom	Х	5,545	48%	52%
Iceland		55	51%	49%
Switzerland		2,000	82%	18%
Norway	Х	1,380	73%	27%

Source: Eurostat

UK Experience with PRFS

- The RAE is the 'mother of all PRFS'; allocates most of the money
- Peer review in more recent times 'informed' by bibliometrics
- Driven by massification and a need to justify cuts in the 1980s
- "A complex process whereby the Russell Group gives itself most of the money"
- Non-linear allocation formula intended to concentrate resources
- Widely acknowledged bias against multidisciplinary and heterodox research
- Stable outcomes; high correlation with performance in research council system
- Anecdotally, massive effects on recruitment, promotion, research management
- High cost: recurring question about greater reliance on metrics

Czech Republic

- Post-reform system of 'research intentions' as basis for funding abandoned owing to low trust and low governance capability
- 'Coffee grinder' 2009-11 wholly metrics based across fields and different types of research organisation
- 'Coffee Grinder points' devalued by 60% 2009-11
- Included many categories of non-scholarly output which were clearly gamed (as were some peer-reviewed publications)
- Combined with erratic allocation of state research budget, the Coffee Grinder caused instability in institutional funding
- Despite constant fiddling with the parameters, the Coffee Grinder was dropped as unfit for purpose following our Research Audit in 2012

Norway

- PRFS introduced following the university 'quality reform' of 2002

 at first in the universities, later (separately) in the institutes
- Simple, metrics-based, no field normalisation, includes a classification of local publication channels
- Reallocates 2% of funding huge change for little money
- University PRFS
 - Quantity but not quality of publications has risen (cp Australia)
 - Proportion of faculty publishing has risen especially in weaker organisations
 - Decline in monetary value of a publication
- Institutes PRFS: effects on publication volume, research management and HR but not on international income or cooperation with universities (already quite high)

Emerging conclusions on PRFS

- There's not much evidence behind the policy trend to PRFS
- Policy purposes seem rarely to be made explicit
- If you dig, you can find them
 - UK: Matthew effect
 - NO: Quality of the whole system
 - CZ: Overcoming governance failures
- PRFS are high-leverage interventions
 - Behaviour change drivers are probably career and status
 - Possible to use them without destabilising institutional funding
- Highly prone to gaming and unintended effects
- Longer-term risks include 'normalisation' of science and research (Kuhn), changes in cooperation behaviour and undermining academia/rest-of-society links

Aarhus Declaration – Science lobby on the march again

- "It is essential that Europe strengthens its science base, with excellence as the guiding principle. In order to be recognised as an attractive partner and a competitive area for research, innovation and higher education in a global knowledge-based economy"
 - Use unbureaucratic, non-thematic instruments; let the very best researchers evolve and pursue the research ideas they are most intrigued by
 - Europe should be the scene for scientific breakthroughs that open up for unforeseen opportunities for humankind
 - Research excellence has , time and again, changed our lives and our thinking. Excellence remains essential to the future of Europe
 - Excellence is the essential foundation that secures the development and availability of human capital to meet the needs of the future

The underlying argument starts with knowledge and ends with governance

- New fundamental knowledge causes innovation
- "We cannot programme scientific breakthroughs or order them from a menu...We can't foresee the consequences of what we discover." [Helga Nowotny, ERC]
- Hence we should not prioritise thematically
- Using any other criterion than excellence means funding suboptimal research
- Only scientists can decide what excellent research is, therefore
 - Fund investigator-initiated, 'blue skies' research
 - Only the scientific community should decide what to fund
 - The more money you give us the richer we'll all get
- In other words, the 'excellence' argument is not about quality but about who controls the money

Norwegian particularities

- NTNF and the institutes came before the research councils to foster industrial development. Is the institute system still adapted to national needs? What about coevolution with the universities?
- Why a single research council?
 - Massive coordination failure with the innsatsområder in the 1980s
 - Holistic policy view was retrofitted after the 2000 evaluation
- Coordination failures endemic in the Norwegian system
 - Strong sector principle sectors' refusal to pay for basic research
 - Low political power of the education/research sector
 - Practical solutions appear after 2000 with inter-ministry cooperation, KD finding resources to coordinate research and RCN increasing its efforts at horizontal programming
- Tough policy problem of the weakness of industrial R&D
 - *'Weak demand' in the research system*
 - A touch of 'Dutch disease' causing lock-ins in industrial structure?

Thank you

erik.arnold@technopolis-group.com www.technopolis-group.com

technopolis |group| has offices in Amsterdam, Brighton, Brussels, Frankfurt/Main, Paris, Stockholm, Tallinn and Vienna

The basic economics of research

- In economic theory, knowledge is 'non-rival' in the sense that it can be used by many people without being consumed
 - If I make a cake and you eat it, I cannot consume it
 - But if I make some knowledge, we can both use it
 - A rare case where you can have your cake and eat it?
- Knowledge is 'non-excludable' in the sense that it is difficult to prevent people who want it from getting hold of it
- Non-rival, non-excludable goods are 'public goods'. They cannot be produced by the market so the state must make them
- In economic reality, however, there is imperfect information, pathdependency and costs to acquire and use knowledge
 - It appears even more costly to absorb science than technology
 - Knowledge is useless without know-how

The rate of subsidy is consistent with degree of spillover

